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Abstract

In this thesis an analogue of the triviality of units of group rings of finite abelian groups

is proved for truncated group rings. A Higman group is a group of exponent 2, 3, 4 or 6.

The truncated group ring ZGt is the quotient of the group ring by the ideal generated by

the formal sum of all group elements. We show that in the case of finite abelian G that

ZGt has only trivial units; i.e, that any unit in ZGt is an image under the quotient map of

a unit of the form ±g, where g ∈ G, if (and only if) G is a Higman group. We additionally

show several results that follow from this pertaining to Swan subgroups.
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CHAPTER 1

Introduction and Preliminary Definitions

We begin by discussing some basic definitions and establishing notations used in the

paper. We then discuss some relevant background material which motivated the question

which this paper answers, particularly the Hilbert-Speiser theorem and its converse. We

then discuss the main theorem under consideration (Theorem 9) and discuss the general

method by which we prove it. Finally, we discuss the definitions, results, and other essential

machinery used to discuss Swan subgroups.

Notation 1. The following notational conventions will be used:

• G — a finite abelian group

• Cn — a cyclic group of order n

• K — a number field

• OK — ring of integers of K

• R — either Z or OK

• KG — the group algebra of G over K

• OKG, M (KG) — the maximal order in KG

• S×— unit group of a ring S

• OKG — group ring

• θ — an algebraic number

• ζ, ξ — roots of unity

– ζ and ζα will be primitive roots of unity

• rank (H) — rank of an abelian group H

Definition 2. Given a commutative ring R and a finite group G, we define the group

ring or group algebra as the set of all formal sums∑
g∈G

α [g] g : g ∈ G,α [g] ∈ R
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with addition defined by

∑
g∈G

α [g] g +
∑
g∈G

β [g] g =
∑
g∈G

(α [g] + β [g]) g

and multiplication defined by linear extension of multiplication on the group.

Notation 3. Given α ∈ RG, we refer to α [g] as the coefficient of g in α.

Definition 4. A group ring RG is said to have only trivial units if the only units in

RG are of the form ug for g ∈ G and u a unit in R.

Definition 5. Given a group ring RG, we define the truncated group ring RGt as the

quotient ring of RG by the ideal RΣG generated by ΣG =
∑

g∈GG.

Definition 6. An idempotent e in an algebra A is a non-zero element such that e2 = e.

A primitive idempotent e in an algebra A is an element such that e is the only idempotent

element in eAe.

Lemma 7. [Higman, Wedderburn] The following hold:

(1) If G is finite, then Q(θ)G is semisimple.

(2) Commutative simple algebras over Q (θ) are isomorphic to algebraic extensions of

Q (θ).

(3) For any Q (θ)G, there exists an extension Q (θ, ζ) of Q (θ) such that

Q (θ)G =

|G|⊕
i=1

Q(θ, ζ)ηi

with Q(θ, ζ)ηi simple for each ηi and each ηi a primitive idempotent. In other

words,

ηiηj =


0 i 6= j

ηi i = j

and
∑
ηi = 1.

Definition 8. We define a Higman group as any finite abelian group with exponent 2,

3, 4, or 6. (Note that this is a different from the other, well-known use of the term “Higman

group”, which refers to a class of infinite groups.)
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In the subsequent chapter, we discuss a proof given by Higman of a result which states,

in the terminology we have used, that

given a finite abelian group G, ZG has only trivial units if and only if G

is a Higman group.

The main theorem proven in this thesis, on the other hand, concerns truncated group rings:

Theorem 9. Let G be a finite abelian group. Then ZGt has only trivial units if and

only if G is a Higman group.

Our general approach to this relies on two theorems. The first is the aforementioned

result of [Higman] regarding ZG, the proof of which is discussed in Chapter 2, and the

other is a result in [Herm-Li-Par] and [Herm-Li] regarding group rings of the form RG

where R is the ring of integers of a quadratic field, which is discussed in Chapter 4.

In Chapter 5, we prove Theorem 9 via induction. For each of n = 2, 3, 4, we first prove

certain base cases explicitly via calculations in the maximal order. These base cases are C2,

C3 and C4, which are relatively easy, as well as C2×C2, C3×C3, and C4×C4. For some of

these latter results, we employ SageMath, an open-source computer algebra application, to

do the heavy lifting of calculation. We then go to the inductive step: if G is a Higman group

of exponent dividing n and G′ = G × Cn, then if ZGt and Z (ζ)G have only trivial units

(where ζ is a primitive root of order n) then so does ZG′t. This last calculation involves

relatively straightforward (though tedious) calculations in group algebras.

The following preliminary material is relevant for corollaries to the main theorem which

are discussed in Chapter 3. Let K be a number field, G a finite group, and L/K a Galois

extension with Galois group isomorphic to G.

Definition 10. L/K is said to have trivial Galois module structure if OL is a free

OKG module — i.e., if there exists an α in OL such that {g (α) : g ∈ G} forms a basis —

called a normal integral basis — over OK .

Definition 11. L/K is said to be tame if for every prime ideal p of OK the ramification

index is relatively prime to the characteristic of the residue field OK/p. It is well know that

L/K is tame if and only if there exists an element of OL with trace 1.
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Definition 12. A number field K is called a Hilbert-Speiser field if each finite tame

abelian extension has trivial Galois module structure.

Theorem 13 (Hilbert-Speiser Theorem). The field K = Q is a Hilbert-Speiser field.

In [GRRS], the converse to this theorem is proved:

Theorem 14 (Converse to the Hilbert-Speiser Theorem). Let K be a number field.

Then K is a Hilbert Speiser field if and only if K = Q.

Remark. The converse of the Hilbert-Speiser theorem was proved by showing the

existence of non-trivial realizable Swan classes (i.e, elements of the intersection of the set of

realizable classes and the Swan subgroup) for cyclic groups of prime order for some prime

numbers.

Definition 15. An RG-module M is locally free if Mp is a free RpG-module for every

prime ideal p of R.

Theorem 16. Let L be a finite Galois extension of K and let G ∼= Gal (L/K). Then

L/K is tame if and only if OL is a locally free OKG module.

LetK0(RG) be the Grothendieck group of all finitely generated locally free RG-modules

modulo [P ] + [N ] = [M ] whenever there is a short exact sequence

0→ P →M → N → 0

Definition 17. Let Ψ : K0(RG) → Z be the map that assigns each element its rank

r. The class group Cl (RG) is the kernel of Ψ; i.e., the members of K0(RG) corresponding

to modules of zero rank. Similarly, the class group Cl (M) is defined as the kernel of the

map assigning each element of K0 (M) its rank r.

Definition 18. Let [OL] be the class determined by the locally free OKG module OL

in Cl (OKG). Let R (OKG) — the realizable classes of OKG — denote the set of classes in

in Cl (OKG) that can be realized as Galois module classes of rings of integers OL in tame

Galois extensions L/K with G ∼= Gal (L/K).

Definition 19. The kernel group of OKG is the kernel of the map Cl (OKG)→ Cl (M).

It is denoted by D (OKG).
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Definition 20. Let r ∈ R satisfy (r, n) = 1. Let σ = ΣG =
∑

g∈G g. Then we define

a Swan module 〈r, σ〉 = RGr +RGσ = RGr +RΣG.

Theorem 21. Swan modules are locally-free RG-modules of rank 1.

Definition 22. The Swan subgroup, denoted T (RG), is the subset ofD(RG) comprised

by all classes of Swan modules. It is a subgroup of K0(RG).

Theorem 23 (Milnor’s Theorem). Let A,A1, A2, Ā be any rings and suppose we have

a fiber product of ring homomorphisms

A A1

A2 Ā

f2

f1

g1

g2

where g1, g2 are surjective. Then there is an exact Mayer-Vietoris sequence

K1A
(f1,f2)−−−−→ K1 (A1)×K1 (A2)

g1×(1/g2)−−−−−−→ K1

(
Ā
)

δ−→K0 (A)
(f1,f2)−−−−→ K0 (A1)⊕K0 (A2)

g1−g2−−−−→ K0

(
Ā
)

We have the following fiber product diagram

RG RG/(σ) Γ

R R/nR R̄

ε ε̄

π

where ε̄ is induced by the augmentation map ε
(∑

g∈G rgG
)

=
∑
rg and Γ is the

truncated group ring RG/RΣG.

This gives rise to the exact sequence

(1.0.1) RG× → Γ× ×R× h−→ R̄×
δ−→ Cl(RG)→ Cl(Γ)⊕ Cl(R)→ 0

from which the following corollary is derived.
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Corollary 24.

T (RG) = Im δ ∼= R̄×/Ker δ ∼=
R̄

h (Γ× ×R×)

Remark 25. From Milnor’s theorem, we can see that h : Γ× × R× → R̄× is given by

[u, v]→ ūv̄−1.
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CHAPTER 2

Trivial Units of Group Rings over the Integers

Theorem 26. [Higman] Let G be a finite abelian group. Then the group ring ZG has

only trivial units if and only if it is a Higman group. That is to say, ZG has only trivial

units if and only if either

(1) G = Cn2 ;

(2) G = Cm3 × Cn2 ;

(3) G = Cm4 × Cn2 .

To prove this, we will prove a series of lemmas, summarized from [Higman]. However,

we first need to discuss some character theory, which will be relevant to the thesis as a

whole.

Since G is abelian, we have |G| irreducible representations of G up to isomorphism, each

into a space of dimension 1. Let X =
{

Γ1, · · · ,Γ|G|
}
be the set of these representations,

and let χig = Γi(g). If m is the exponent of G, then for all g ∈ G, χig is an mth root of

unity. Note that Γi in each case is a representation of dimension 1, so we can treat the

image of each Γi as a field. If we do have that the character and the representation are the

same thing, and we can apply character theory directly to the pursuit of our goal! In what

follows, we therefore write χig for Γi(g) exclusively.

Remark 27 (Orthogonality relations).

•
∑

g∈G χ
i
gχ

j
g = [G : 1]δij . As a consequence,

∑
g∈G

χigχ
j
g = δij |G|

•
∑

Γk∈X |C(g)|χkgχkh = [G : 1]δgh. Now since C (g) = {g} since G is abelian, we

have that this becomes

∑
Γk∈X

χkgχ
k
h = |G| δgh
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Lemma 28. [Higman] Let

ηi =
1

|G|
∑
g∈G

χigg

Then Q (θ, ζ)G ∼= ⊕|G|−1
i=0 Q (θ, ζ) ηi .

Proof. Let g ∈ G. Now, since G is a group, for any h ∈ G, g = g′h for some g′ ∈ G.

Since χi is a representation, we have that χig = χig′χ
i
h. Thus,

ηi =
1

|G|
∑
g∈G

χigg

=
1

|G|
∑
g′∈G

χig′χ
i
hg
′h

= χih

 1

|G|
∑
g′∈G

χig′g
′

h

= χihηih

Multiplying by χjh, we have

χjhχ
i
hηi = χjhηih

Summing over h ∈ G gives

∑
h∈G

χjhχ
i
hηi =

∑
h∈G

χjhηih

or

δij |G| ηi =
∑
h∈G

χjhhηi

= |G| ηiηj

or

ηiηj = δijηi

=


ηi i = j

0 i 6= j

�
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Since the ηi form a basis for Q (θ, ζ)G, if z ∈ Q (θ, ζ)G, then

z =
∑

Γi∈X

biηi

We will write bi as z [ηi] in the sequel.

Lemma 29. We have Q (θ)G ∼=
⊕p−1

i=0 Q(θ, ξα) where ξα has order

h = lcm ({ord (χα (g)) : g ∈ G})Swansubgroup

and p is the number of non-conjugate (in Q (θ)) representations of G.

Proof. Let σ ∈ Gal (Q (θ, ζ) : Q (θ)). Let Γi ∈ X be one of the aforementioned

representations. Then σ ◦ Γi : Q (θ, ζ)G → Q (θ, ζ) is a homomorphism, and thus σ ◦

Γi =: Γσ(i) ∈ X. We say Γσ(i) is conjugate to Γi. Let ξi be a root of unity of order

h = lcm ({ord (χα (g)) : g ∈ G}) . Then Q (θ, ξi) is the smallest extension of Q (θ) in which

Γi exists, in the sense that im
(
Γi
)
⊆ Q (θ, ξi). Since h is the maximum order of any element

in G, we have, by the fundamental theorem of finite abelian groups, that G ∼= Zh ×G′. If

we set Γi to be the representation mapping the generator of G to ζ, and all elements of G′

to 1, then we have that ξi is a primitive root.

From this it follows that the maximal order of Q (θ)G is isomorphic to the maximal

order of
⊕p−1

i=0 Q(θ, ξα)

Let Uk denote the subgroup of all σ ∈ Gal (Q (θ, ζ) : Q (θ)) such that Γσ(k) = Γk. We

have that σ ∈ Uk if and only if σ(χkg) = χkg for all g ∈ G. By the fundamental theorem of

Galois theory, we have that the fixed field of Uk is Q (θ, ξk). �

Recall that

z [ηi] =
∑

Γi∈X

z [g]χig

ThenE ∈ Q (θ)G iff σ (E [ηi]) = E
[
ησ(i)

]
for every Γi ∈ X and every σ ∈ Gal (Q (θ, ζ) : Q (θ)).

Thus, we can choose some subset X ′ ⊆ X consisting of non-conjugate representations Γi.

If our previous condition is met, then E [ηk] ∈ Q (θ, ξk) for all Γk ∈ X ′. Furthermore, for

a given set of values
{
bk ∈ Q (θ, ξk) : Γk ∈ X ′

}
, there is a unique E ∈ Q (θ)G such that

E[ηk] = bk and σ (E [ηi]) = E
[
ησ(i)

]
for every Γi ∈ X and every σ ∈ Gal (Q (θ, ζ) : Q (θ)).
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Lemma 30. O×Q(ζ)G
∼=
∏p−1
i=0 O (Q (ζi))

×.

Proof. We note that there is a 1 − 1 correspondence between elements of Q (θ) and

sequences of values of z [ηi] for Γi ∈ X ′, a set of p non-conjugate representations. Further-

more, multiplication and addition are preserved.

Define Φ : Q (θ)G ∼=
⊕p−1

i=0 O (Q(θ, ξα)) by mapping

E 7→
(
E [ηi] ∈ O (Q (θ, ξk)) : Γk ∈ X ′

)
Since the ηi are basis elements, we have that this is an isomorphism of rings. Indeed, if F

is any other member of Q (θ)G, then since ηiηiηj = δijηi,

Φ (EF ) =
(
E [ηi]F [ηi] ∈ O (Q (θ, ξk)) : Γk ∈ X ′

)
Φ (E + F ) =

(
E [ηi] + F [ηi] ∈ O (Q (θ, ξk)) : Γk ∈ X ′

)
�

Lemma 31. A unit of finite order in OQ(ζ)G is trivial.

Proof. Let x ∈
(
OQ(θ)G

)× be of finite order. Then

x [ηi]
m = 1

for all Γi ∈ X. Then x [ηi] is a complex number with absolute value 1, and so is χig for any

g ∈ G. Since x is a unit, we can choose g ∈ G such that x[g] 6= 0. Then

|x[g]| =

∣∣∣∣∣∣ 1

|G|
∑

Γi∈X

(x [ηg])χ
i
g

∣∣∣∣∣∣
≤ 1

|G|
∑

Γi∈X

∣∣(x [ηg])χ
i
g

∣∣
= 1

Similarly, each conjugate of x[g] satisfies this relation for x[g] as well. But the product of

these conjugates is the norm of x[g], a non-zero integer, so |x[g]| = 1 and the above becomes

an equality. Thus,

x[g] = (x [ηi])χ
i
g,∀Γi ∈ X
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x[ηi] = (x [h])χih, ∀Γi ∈ X

�

Lemma 32. There exists an n such that for all u ∈ O×Q(ζ)G, u
n ∈

(
OQ(ζ)G

)×.
Proof. Choose n to be the number of residue classes modulo |G| in Q (θ, ζ) relatively

prime to |G|. Let x be a unit in the integer ring of Q (θ)G. Then x[ηi] is a unit in

Q (θ, ζ) for all Γi ∈ Q (θ, ζ) and is therefore relatively prime to G. Then x [ηi]
n ≡ 1

(mod |G|), so x [ηi]
n 1 = ci|G| for some ci ∈ O (Q (θ, ζ)). Then xn = 1 +

∑
Γi∈X ci|G|ηi.

The coefficients in |G|ηi are algebraic integers, so therefore the coefficients in xn are as well,

so xn ∈ OQ(θ)G. �

Lemma 33. O×Q(ζ)G and
(
OQ(ζ)G

)× have the same rank as abelian groups.

Proof. Let x ∈ O×Q(θ)G. Then x
−n =

(
x−1

)n ∈ OQ(θ)G. Then xn is a unit in OQ(θ)G.

Since the set of nth powers of a given independent set of units is itself an independent set

of units, we have that rank
((
OQ(θ)G

)×) ≥ rank
(
O×Q(θ)G

)
.

But rank
((
OQ(θ)G

)×) ≤ rank
(
O×Q(θ)G

)
since

(
OQ(θ)G

)× ⊆ O×Q(θ)G, so we have that

the ranks are equal. �

Theorem 26 then follows from the preceding lemmas via the following reasoning: Using

Lemma 33 and setting θ = 1, we have that rank
(
(ZG)×

)
= 0 if and only if rank

(
Q (ζ)×

)
=

0.

Dirichlet’s Unit Theorem states that ifK is a number field then rank
(
O×K
)

= r1+r2−1,

r1 being the number or real embeddings of K, r2 the number of complex embeddings. Thus,

we have that if ζ is of order h,

rank
(
Q (ζ)×

)
= r1 + r2 − 1

where

r1 =


1 h odd

2 h even
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and

r2 =


h−1

2 h odd

h
2 − 1 h even

The rank equals zero when h = 2, 3, 4, 6. These are in fact the only such h. For r1 + 2r2 =

φ(h) since this is the number of embeddings of the field; therefore, r1 + r2 − 1 = 0 implies

r1 +r2 = 1. Then either r2 = 0 or r1 = 0. If r2 = 0 then we have r1 = 1 so φ(h) = 1+0 = 1

which happens if and only if h = 2. If r1 = 0 then r2 = 1, so φ(h) = 0 + 2 = 2, which

happens if h = 3, 4, or 6.
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CHAPTER 3

Application to Swan Subgroups

We calculate the Swan subgroups T (ZG) for Higman groups of the forms so far dis-

cussed. We first present some known results mentioned in [Guzman].

Theorem 34. For m ≥ 2,

T (ZC2) =
(Z/2mZ)×

Im (Z×)

.

Proposition 35. T (RG) is the homomorphic image of R̄/ Im(R×). If R = Z and

|G| > 2, then

|T (RG)| | φ(n)

2

Proof. By Corollary 24 we have that

T (RG) ∼=
R̄

h (Γ× ×R×)

=
R̄

Im (Γ×) Im (R×)

� R̄/ Im(R×)

If R = Z, then

|T (ZG)| |
∣∣∣∣ Z̄×

Im (Z×)

∣∣∣∣
and for n ≥ 2, 1 6≡ −1 (mod 2) so Im (Z×) = {±1}. �

Proposition 36. If G is cyclic then T (ZG) = 0.

Proof. Let G = Cn = 〈x〉 and let r ∈ Z such that (r, n) = 1. Consider

u =
xr−1 − 1

x− 1

=
r−1∑
i=0

xi ∈ ZG

13



Since (r, n) = 1. there exists s, t ∈ Z such that rs+ tn = 1. Then

u−1 =
x− 1

xr−1 − 1

=
xrs − 1

xr − 1
∈ ZG

Then u+ ZΣ =
∑r−1

i=0 x
i + ZΣ ∈ Γ× and ε (u) = r so

h : Γ× × Z× → Z̄×

�

Applying Corollary 24 we have the desired result

Corollary 37. When G = C2, C3, or C4, T (ZG) = 0.

Theorem 38. [MT-LJM] If G is a non-cyclic group of order pm for some m ∈ Z and

some odd prime p, then T (ZG) is a cyclic group of order pn−1.

An analogue of Theorem 38 is also known for p = 2 and is proved by Taylor in

[MT-LJM]. The following theorem is a special case, proven as a corollary of Theorem

9.

Theorem 39. For m ≥ 2

T (ZCm2 ) =
(Z/2mZ)×

Im (Z×)

=
(Z/2mZ)×

Im ({±1})

∼= Z/2m−2Z

|T (ZCm2 )| = 2m−2

In [Ullom], as cited by [Guzman], it is shown that:

Proposition. In the exact sequence found in Equation 24, Imδ = T (RG). δ is given

by δ (r̄) = 〈r, σ〉 ∈ D (RG).

Proposition 40. By the exact sequence above, we have

T (RG) ∼= R̄×/h
(
Γ× ×R×

)
14



∼= R̄×/im
(
Γ×
)

where im (Γ×) = ε̄ (Γ×) and Γ is the truncated group ring RGt.

Finally, we have the following well-known result:

Proposition 41. The Swan subgroup T (RG) is the homomorphic image of R̄/ Im (R×).

Furthermore, when R = Z and |G| = n > 2, then |T (RG)| | ϕ(n)
2 where ϕ is the Euler totient

function.

We now discuss the cases G = C3 × Cn2 and G = C4 × Cn2 .

For the first, let G =
〈
b, a1, · · · , an : a2

i = b3 = 1, xy = yx for all x, y ∈ G
〉
. Then the

pullback diagram becomes

ZG ZG/ZΣ

Z Z/nZ

ε ε̄

π

Now

im
(
Γ×
)

= im
(
(ZG/ZΣ)×

)
By Theorem 9 we have that ZG/ZΣ has only trivial units in this case, so

im
(
Γ×
)

= im ({±g : g ∈ G})

= ε̄ ({±g : g ∈ G})

= {±1̄}

Thus,

T (ZG) ∼=
(Z/|G|Z)×

{±1̄}

∼=
(Z/(3·2n)Z)×

{±1̄}

Since |T (ZG)| | ϕ(3·2n)
2 and ϕ(3·2n)

2 = ϕ(3)ϕ(2n)
2 = ϕ(2n) = 2n−1, we have that |T (ZG)| |

2n−1.
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When n = 1, (Z/6Z)× = 〈±1̄〉 so T (ZG) is trivial. (This can also be seen by the fact

that in this case G = C3 ×C2
∼= C6 is a cyclic group, so T (ZG) is trivial by Theorem 1.23

in [Guzman].

In general,

(Z/(3·2n)Z)× ∼= (Z/3Z)× × (Z/(2n)Z)×

∼= Z/2Z×
(
Z/(2n−2)Z

)
× Z/2Z

with the two cyclic groups of order 2 being generated by 2n+1 + (−1)n+1 and 2n + (−1)n.

The product of these generators is

(
2n+1 + (−1)n+1

)
(2n + (−1)n) = 22n+1 + (−1)2n+1 − (−2)n+1 − (−2)n

Modulo 3 · 2n, we have

2n+k ≡ 3 · 2n+k−1 − 2n+k−1

≡ −2n+k−1 = (−1)k 2n

If n is even, then

22n+1 + (−1)2n+1 − (−2)n+1 − (−2)n = 22n+1 − 1 + 2n+1 − 2n

= 22n+1 + 2n − 1

Since 22n+1 ≡ −2n (mod 3 · 2n) we have that

22n+1 + 2n − 1 ≡ −1 (mod 3 · 2n)

If n is odd, then

22n+1 + (−1)2n+1 − (−2)n+1 − (−2)n = 22n+1 − 1− 2n+1 + 2n

= 22n+1 − 1− 2n

and modulo 3 · 2n we have

22n+1 − 1− 2n ≡ 2n − 2n − 1 (mod 3 · 2n)
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≡ 1 (mod 3 · 2n)

In either case, we have that T (ZG) is the quotient of Z/2Z ×
(
Z/(2n−2)Z

)
× Z/2Z by the

subgroup generated by the product of the firSst and last cyclic components. Thus, T (ZG) ∼=(
Z/(2n−2)Z

)
× Z/2Z, and therefore

|T (ZG)| = 2n−1

For the second case, let G = C4 × Cn2 . By our work in Chapter 5, we have that ZG/ZΣ

has only trivial units in this case, so

im
(
Γ×
)

= im ({±g : g ∈ G})

= ε̄ ({±g : g ∈ G})

= {±1̄}

Thus,

T (ZG) ∼=
(Z/|G|Z)×

{±1̄}

∼=
(
Z/(2n+2)Z

)×
{±1̄}

Now,

(
Z/(2n+2)Z

)× ∼= Z/2Z× Z/2nZ

with the generator of the first component being the image of −1̄. Thus,

T (ZG) ∼= Z/2nZ

Theorem 42. If G = Cm3 × Cn2 , m,n ≥ 1, then |T (ZG)| = 3m−1 · 2n−1.

Proof. Let G = Cm3 × Cn2 By our work in Chapter 5, we have that ZG/ZΣ has only

trivial units in this case, so

im
(
Γ×
)

= im ({±g : g ∈ G})

= ε̄ ({±g : g ∈ G})

= {±1̄}
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and

T (ZG) ∼=
(Z/|G|Z)×

{±1̄}

∼=
(Z/(3m·2n)Z)×

{±1̄}

Now,

(Z/(3m·2n)Z)× ∼= (Z/3mZ)× × (Z/2nZ)×

∼= Z/2Z× (Z/3m−1Z)× Z/2Z× (Z/2n−2Z)

so ∣∣∣∣(Z/(3m·2n)Z)×

{±1̄}

∣∣∣∣ = 3m−1 · 2n−1

Since |T (ZG)| | ϕ(3m·2n)
2 = 3m−1 · 2n−1, and (Z/(3m·2n)Z)× has cardinality 3m−1 · 2n , we

have that |T (ZG)| = 3m−1 · 2n−1. �
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CHAPTER 4

Trivial Units of Group Rings over Integer Rings of Quadratic

Imaginary Fields

Theorem 43 ([Herm-Li]). Let G be a finite abelian group and R = OK for K an

algebraic number field. Then RG has only trivial units if and only if one of the following

holds:

(1) G = Cn2 and K = Q or K = Q
(√
−d
)
for d either 1 or a squarefree positive

integer;

(2) G = Cm4 × Cn2 and K = Q or K = Q (i);

(3) G = Cm3 × Cn2 and K = Q or K = Q (ζ3) where ζ3 = −1+i
√

3
2 .

To prove this theorem, found in [Herm-Li] we prove yet another series of lemmas from

both [Herm-Li] and [Herm-Li-Par].

Lemma 44. Let R be a commutative ring. Then the following are equivalent:

(1) RC2 has nontrivial units;

(2) There exist a, b 6= 0 in R such that a2 − b2 ∈ R×;

(3) There exists a 6= 0, 1 in R such that 2a− 1 ∈ R×.

Proof.

• ((1) ⇔ (2)): Suppose u is an nontrivial unit in RC2. Then u = a + bx where

a, b 6= 0, and since u is a unit, we have that for all s, t ∈ R there exists v, w ∈ R

such that

(a+ bx) (v + wx) = s+ tx

Equating coefficients, this is equivalent to saying that v, w exist and satisfy

av + bw = s

bv + aw = t,
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or equivalently that the matrix

a b

b a

 has an inverse in M2 (R). By the deter-

minant property this holds if and only if a2 − b2 ∈ R×.

• ((1) ⇔ (3)): Suppose u = a + bx is an nontrivial unit in RC2. Assume without

loss of generality that ε (u) = 1: i.e, that a+ b = 1. Then u = a+(1−a)x. By the

preceding proof this is non-trivial if and only if a2− (1− a)2 = a2− 1 + 2a− a2 =

2a− 1 ∈ R×.

�

Lemma 45. Suppose R = O (K) for K an algebraic number field and suppose RC2 has

only trivial units. Then either K = Q or K is an imaginary quadratic number field.

Proof. By the preceding lemma, for all r ∈ R, if 2r− 1 is a unit, then r = 0 or r = 1.

Then Γ = {u ∈ R× : u = 2r − 1} = {±1}. But this is the kernel of the homomorphism

π : R× → (R/2R)× given by u → u + 2R above. Since R/2R is finite we have that Γ

is of finite index. The only way for Γ to be finite is for R× to be finite. Since K is a

finite extension of Q, it follows from Dirichlet’s unit theorem that that in order for this to

happen, K = Q or K = Q
(√
−d
)
, where d is a square-free positive integer. �

Lemma 46. Let R be a commutative ring with unity with characteristic 0. Then if RC2

and RG have only trivial units, then R [G× C2] has only trivial units.

Proof. Let u ∈ R [G× C2]×. Without loss of generality assume that u has augmenta-

tion 1. Then u = a+ bx, 〈x〉 = C2, a, b ∈ RG, and ω(a) + ω (b) = 1, where ω : RG→ R is

the augmentation map. Similarly, the inverse u−1 = c+ dx satisfies ω(c) +ω (d) = 1. Then

we have that

ac+ bd = 1

ad+ bc = 0

or

(a+ b) (c+ d) = 1

(a− b) (c− d) = 1
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Thus, a + b is a unit of augmentation 1 in RG and thus a + b = g ∈ G. Similarly,

a− b ∈ (RG)× so a− b = vh for some v ∈ R×, h ∈ G. Now this implies

v = 2ω(a)− 1

is a unit in R and since RC2 has trivial units, we have ω(a) = 0 or 1, so v = ±1. Thus,

2a = g + vh

2b = g − vh

If g = h, then either 2a = 0 or 2b = 0. By assumption, R has characteristic 0 and RC2 has

only trivial units, so 2 is not a zero divisor, so a = 0 or b = 0. If b = 0, then u = a ∈ RG×

is trivial. If a = 0, then ux ∈ RG× is a trivial unit, and hence so is u.

On the other hand, if g 6= h, then 2a = g+ vh implies that 2 is invertible in R. Setting

a = −2−1 gives us that −2−1 = 1, implying R is of characteristic 3, a contradiction of our

initial assumption. �

Corollary. Suppose RC2 has only trivial units. Then RE2, where E is an elementary

abelian 2-group, also has trivial units. In fact, RE2 has trivial units if and only if K = Q

or K = Q
(√
−d
)
for d a square-free positive integer.

Lemma 47. Let R be a commutative ring with unity. Then RC3 has nontrivial units if

and only if there exist a, b ∈ R such that (a, b) /∈ {(0, 0) , (−1, 0) , (−1,−1)} and 1 + 3a +

3a2 + 3b2 − 3ab ∈ R×.

Proof. Let 〈x〉 = C3. Let u ∈ RC3 have augmentation 1. Then u = 1+(1−x) (a+ bx)

for some a, b ∈ R and u is nontrivial if and only if (a, b) /∈ {(0, 0) , (−1, 0) , (−1,−1)}.

Consider the quotient ring R〈x〉
1+x+x2

∼= R [y], where y2 + y + 1 = 0 and y3 = 1 6= y we have

that the image of u in R 〈y〉 is

v = 1 + (1− y) (a+ by)

= 1 + a+ by − ay − by2

= 1 + a+ by − ay + by + b

= 1 + a+ b+ (2b− a)y
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Now, since v is a unit, for any element s+ty ∈ R [y] we can find p+qy such that v (p+ qy) =

s+ ty. Since

v (p+ qy) = [1 + a+ b+ (2b− a)y] (p+ qy)

= (1 + a+ b) p− (2b− a)q + ((2b− a)p+ (1− b+ 2a) q) y

we have that the system

(1 + a+ b) p− (2b− a)q = s

((2b− a)p+ (1− b+ 2a) q) = t

in p and q has a solution in R for all s, t ∈ R, so the determinant of (1 + a+ b) (2b− a)

(2b− a) (1− b+ 2a)


must be a unit of R. This determinant is exactly 1 + 3a+ 3a2 + 3b2− 3ab, so this condition

is indeed necessary. It is also sufficient, as if a, b satisfy the condition, then if

e = a2 + b2 + a− ab

d =1 + 3e ∈ R×

u =1 + (1− x) (a+ bx)

w =
(1 + a+ e) + (e− b)x+ (e+ b− a)x2

d

then uw = 1 and u is therefore a non-trivial unit of R. �

Lemma 48. Let R be a commutative ring with unity of characteristic 0, and suppose

RC3 has trivial units and that G is a finite elementary abelian 3-group. Then RG has only

trivial units.

Proof. The proof is by induction and analoguous to Lemma 46. �

Lemma 49. Let R be a commutative ring with unity. Then RC4 has non-trivial units if

and only if either RC2 has nontrivial units or there are nonzero a, b ∈ R with a 6= −1 such

that 2a2 + 2b2 + 2a = 0.
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Proof. If 〈g〉 = C4 then let f : RC4 → RC2 be the R-linear extension of the group

homomorphism C4 → C2. Suppose u ∈ RC4 is an nontrivial unit, and suppose RC2 has only

trivial units. Since f is a group ring homomorphism and maps units to units, we can assume

without loss of generality that f (u) = 1. We can also assume that u = 1+
(
1− x2

)
(a+ bx)

for some nonzero a, b ∈ R such that a 6= −1.

Now let u∗ = 1 +
(
1− x2

) (
a+ bx3

)
. We have that

u∗ = 1 +
(
1− x2

) (
a+ bx3

)
= 1 +

(
a− ax2 + bx3 − bx

)
= 1 +

(
1− x2

)
(a− bx)

so therefore

uu∗ =
[
1 +

(
1− x2

)
(a+ bx)

] [
1 +

(
1− x2

)
(a− bx)

]
= 1 +

(
1− x2

) (
2a+ 2a2 + 2b2

)
∈
(
R
〈
x2
〉)×

Since
(
R
〈
x2
〉)× has only trivial units, we have that 2a+2a2+2b2 = 0 or 2a+2a2+2b2 = −1.

If 2a+ 2a2 + 2b2 = −1, then a+ a2 + b2 = −1
2 so 2 is invertible, contradicting Lemma 46.

If 2a+ 2a2 + 2b2 = 0 then we have that u is a non-trivial unit of RC4.

From this, using either Dirichlet’s Unit Theorem or Pell’s equations, one derives the

theorem statement. �

Corollary. Suppose R is the integer ring of an algebraic number field and G is an

abelian group of exponent 4. Then RG has trivial units if and only if R = Z or R = Z [i].

Proof. This follows from Theorem 26 and the previous lemma, together with an in-

duction lemma similar to Lemma 46. �
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CHAPTER 5

Trivial Units of Truncated Group Rings

Proposition 50. ZGt has trivial units when G = C2 since (ZC2)t
∼= Z

Proof. If C2 = 〈e〉 then

ZG
ZΣG

=
Z [1]⊕ Z [1 + e]

Z [1 + e]

∼= Z

�

Proposition 51. Z (ω) [C2]t has only trivial units.

Proof. If C2 = 〈e〉 then

Q (ω)G = Q (ω)

[
1 + e

2

]
⊕Q (ω)

[
1− e

2

]
so

Q (ω)G

Q (ω) ΣG
=

Q (ω)
[

1+e
2

]
⊕Q (ω)

[
1−e

2

]
Q (ω)

[
1+e

2

]
∼= Q (ω)

The corresponding maximal order is

M = Z (ω)

[
1 + e

2

]
⊕ Z (ω)

[
1− e

2

]
and the corresponding truncated maximal order is

Z (ω)

[
1− e

2

]
∼= Z (ω)

which has 6 units. Since there are 6 trivial units in Z (ω) [C2]t, it follows that Z (ω) [C2]t

has only trivial units. �

Proposition 52. Z [C3]t has only trivial units.
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Proof. Let G = C3 = 〈e〉. Let ω be a primitive 3rd root of unity. In the group algebra

Q (ω)G we have that

Q (ω)G = Q (ω)

[
1 + e+ e2

3

]
⊕Q (ω)

[
1 + ωe+ ω2e2

3

]
⊕Q (ω)

[
1 + ω2e+ ωe2

3

]
so passing to QG, we have

QG = Q
[

1 + e+ e2

3

]
⊕Q 〈e〉

[
1 + ωe+ ω2e2

3
+

1 + ω2e+ ωe2

3

]
= Q

[
1 + e+ e2

3

]
⊕Q 〈e〉

[
1− 1 + e+ e2

3

]
Thus

QG
QΣG

=
Q
[

1+e+e2

3

]
⊕Q 〈e〉

[
1− 1+e+e2

3

]
Q
(

1+e+e2

3

)
= Q 〈e〉 [1−QΣG]

Since

e+ e2 ≡ −1 (mod QΣG),

we have that Q (e) [1−QΣG] ∼= Q (ω) via the map

e−QΣG 7→ ω

where ω is a primitive cube root of unity.

The maximal order is then

M = Z
[

1 + e+ e2

3

]
⊕ Z 〈e〉

[
1− 1 + e+ e2

3

]
and the truncated maximal order is isomorphic to Z [ω]. Z [ω] has six units, all trivial,

which must correspond to the trivial units in M . �

Proposition 53. Z [C4]t has only trivial units.

25



Proof. We have that if G = C4 = 〈e〉 and if i is the primitive 4th root of unity, then

for the group algebra Q(i)G we have that

Q (i)G = Q (i)

(
Σ

4

)
⊕Q (i)

(
1− e+ e2 − e3

4

)
⊕Q (i)

(
1 + ie− e2 − ie3

4

)
⊕Q (i)

(
1− ie− e2 + ie3

4

)
so passing to QG we have that

QG = Q 〈e〉
(

Σ

4

)
⊕Q 〈e〉

(
1− e+ e2 − e3

4

)
⊕Q 〈e〉

(
1 + ie− e2 − ie3

4
+

1 + ie− e2 − ie3

4

)
= Q

(
Σ

4

)
⊕Q

(
1− e+ e2 − e3

4

)
⊕Q 〈e〉

(
1− e2

2

)

QG
QΣG

=
Q
(

Σ
4

)
⊕Q

(
1−e+e2−e3

4

)
⊕Q 〈e〉

(
1−e2

2

)
Q
(

Σ
4

)
= Q

(
1− e+ e2 − e3

4

)
⊕Q 〈e〉

(
1− e2

2

)
∼= Q⊕Q (i)

The corresponding maximal order is

M = Z
(

Σ

4

)
⊕ Z

(
1− e+ e2 − e3

4

)
⊕ Z 〈e〉

(
1− e2

2

)

and the corresponding truncated maximal order is Z
(

1−e+e2−e3
4

)
⊕Z 〈e〉

(
1−e2

2

)
∼= Z⊕Z [i]

. This has eight units, which clearly correspond to the eight trivial units in ZG. �

Proposition 54. Z [C2 × C2]t has only trivial units

Proof. Let G = 〈f, g〉 = C2 × C2. Then for the group ring, we have

QG = Q
ΣG

4
⊕Q

(
1− f + g − fg

4

)
⊕Q

(
1 + f − g − fg

4

)
⊕Q

(
1− f − g + fg

4

)
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so

QG
QΣG

= Q
(

1− f + g − fg
4

)
⊕Q

(
1 + f − g − fg

4

)
⊕Q

(
1− f − g + fg

4

)
∼= Q3

The maximal order corresponding to this is

M = Z
ΣG

4
⊕ Z

(
1− f + g − fg

4

)
⊕ Z

(
1 + f − g − fg

4

)
⊕ Z

(
1− f − g + fg

4

)
and the truncated maximal order is

Z
(

1− f + g − fg
4

)
⊕ Z

(
1 + f − g − fg

4

)
⊕ Z

(
1− f − g + fg

4

)
which is isomorphic to Z3. Z3 has 23 = 8 units, and ZGt has 8 trivial units, so it follows

that ZGt has only trivial units. �

Proposition 55. Z [C3 × C3]t has only trivial units.

Proof. We have that if G = 〈f, g〉 and if ω is the primitive cube root of unity, then

for the group algebra Q(ω)G we have that

Q(ω)G = Q (ω)

[(
1 + f + f2

) (
1 + g + g2

)
9

]
⊕Q (ω)

[(
1 + f + f2

) (
1 + ωg + ω2g2

)
9

]

⊕Q (ω)

[(
1 + f + f2

) (
1 + ω2g + ωg2

)
9

]

⊕Q (ω)

[(
1 + ωf + ω2f2

) (
1 + g + g2

)
9

]
⊕Q (ω)

[(
1 + ω2f + ωf2

) (
1 + g + g2

)
9

]

⊕Q (ω)

[(
1 + ωf + ω2f2

) (
1 + ωg + ω2g2

)
9

]

⊕Q (ω)

[(
1 + ωf + ω2f2

) (
1 + ω2g + ωg2

)
9

]

⊕Q (ω)

[(
1 + ω2f + ωf2

) (
1 + ωg + ω2g2

)
9

]

⊕Q (ω)

[(
1 + ω2f + ωf2

) (
1 + ω2g + ωg2

)
9

]
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Passing to QG we have

QG = Q

[(
1 + f + f2

) (
1 + g + g2

)
9

]
⊕Q 〈g〉

[(
1 + f + f2

)
3

(
1− 1 + g + g2

3

)]

⊕Q 〈f〉

[(
1− 1 + f + f2

3

) (
1 + g + g2

)
3

]

⊕Q 〈f〉
[

2− f − f2 − g − fg + 2f2g − g2 + 2fg2 − f2g2

9

]
⊕Q 〈f〉

[
2− f − f2 − g + 2fg − f2g − g2 − fg2 + 2f2g2

9

]
Thus,

QG
QΣG

= Q 〈g〉

[(
1 + f + f2

)
3

−QΣG

]

⊕Q 〈f〉

[(
1 + g + g2

)
3

−QΣG

]

⊕Q 〈f〉
[

1 + f2g + fg2

3
−QΣG

]
⊕Q 〈f〉

[
1 + fg + f2g2

3
−QΣG

]
The corresponding maximal order is

M = Z

[(
1 + f + f2

) (
1 + g + g2

)
9

]
⊕ Z 〈g〉

[(
1 + f + f2

)
3

(
1− 1 + g + g2

3

)]

⊕ Z 〈f〉

[(
1− 1 + f + f2

3

) (
1 + g + g2

)
3

]

⊕ Z 〈f〉
[

2− f − f2 − g − fg + 2f2g − g2 + 2fg2 − f2g2

9

]
⊕ Z 〈f〉

[
2− f − f2 − g + 2fg − f2g − g2 − fg2 + 2f2g2

9

]
and the truncated maximal order is

Z 〈g〉

[(
1 + f + f2

)
3

−QΣG

]

⊕ Z 〈f〉

[(
1 + g + g2

)
3

−QΣG

]
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⊕ Z 〈f〉
[

1 + f2g + fg2

3
−QΣG

]
⊕ Z 〈f〉

[
1 + fg + f2g2

3
−QΣG

]
This is isomorphic to Z (ω)4, which has 64 units. However, an enumeration of the cor-

responding elements in the maximal order shows that there are only trivial units in the

truncated group ring. �

Theorem 56. Suppose G′ = G×C2, where C2 = 〈f〉, and suppose ZG has only trivial

units and |G| > 2. Then if ZGt has only trivial units, then ZG′t has only trivial units

Proof. Suppose ZGt has only trivial units; equivalently, we say that

(x− ZΣG) (y − ZΣG) = 1− ZΣG.

In other words,

xy − 1 = mΣG

for some m ∈ Z if and only if

x− u = m′ΣG

for some m′ ∈ Z, u = ±g ∈ G.

Let x = a+ bf + ZΣG (1 + f) ∈ ZG′t be a unit. Suppose c, d ∈ ZG exist such that

(a+ bf + ZΣG (1 + f)) (c+ df + ZΣG (1 + f)) = 1 + ZΣG (1 + f)

Then

ac+ bd+ bcf + adf + ZΣG (1 + f) = 1 + ZΣG (1 + f) ,

or equivalently

ac+ bd+ bcf + adf − 1 =
m

2
ΣG (1 + f)

for some m
2 ∈ Z This implies

ac+ bd− 1 =
m

2
ΣG

bc+ ad =
m

2
ΣG
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In other words,

(a+ b) (c+ d)− 1 = mΣG

(a− b) (c− d)− 1 = 0

Since ZGt has only trivial units, we have

a+ b− u = m1ΣG

a− b− u′ = 0

where u = ±g, u′ = ±g′, for some m1 ∈ Z. Then

a− u+ u′

2
=
(m1

2

)
ΣG

By definition of ΣG, we have that for all h ∈ G,(
a− u+ u′

2

)
[h] =

(m1

2

)
Now suppose for a contradiction that g 6= g′. Then we have(

a− u+ u′

2

)
[g] = a [g]± 1

2(
a− u+ u′

2

)[
g′
]

= a
[
g′
]
± 1

2

Since |G| > 2 we can choose yet another element g′′ ∈ G. Then(
a− u+ u′

2

)[
g′′
]

= a
[
g′′
]

= a
[
g′
]
± 1

2

contradicting the fact that a [g′′] ∈ Z and a [g′]± 1
2 /∈ Z. Thus, g′ = g, so

u = ±u′ = ±g,

and therefore

a+ b− u = m1ΣG(5.0.1)

a− b± u = 0(5.0.2)

so a+ b ≡ ± (a− b) (mod ΣG). As an additional consequence, we note that m1
2 ∈ Z
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If a+ b ≡ a− b ≡ u (mod ΣG) we have a ≡ u (mod ΣG),b ≡ 0ΣG. Indeed, we have

a = u+
m1ΣG

2

b =
m1ΣG

2

so

a+ bf =

(
u+

m1ΣG

2

)
+
m1ΣG

2
f

= u+
m1ΣG (1 + f)

2

On the other hand, if a+ b ≡ u ≡ b−a (mod ΣG),we have b ≡ u (mod ΣG) and a ≡ 0

(mod ΣG). Indeed, by equations (5.0.1) and (5.0.2), we have

a =
m1ΣG

2

b = u+
m1ΣG

2

so

a+ bf =

(
m1ΣG

2

)
+

(
u+

m1ΣG

2

)
f

= uf +
m1ΣG (1 + f)

2

In both cases a+ bf is a trivial unit modulo ΣG (1 + f), as was sought to prove. �

Theorem 57. Suppose G′ = G × C3, where |G| > 3 and C3 = 〈f〉. Then if ZGt and

Z (ω)G have only trivial units, where ω is the primitive cube root of unity , then ZG′t has

only trivial units.

Proof. Suppose ZGt has only trivial units; i.e,

xy − 1 = mΣG

for some m ∈ Z if and only if

x− u = m′ΣG
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for some m′ ∈ Z, u = ±g ∈ G. Let

x = a+ bf + cf2 + ZΣG
(
1 + f + f2

)
∈ ZG′t

be a unit. Suppose a′, b′, c′ ∈ ZG exist such that

y = a′ + b′f + c′f2 + ZΣG
(
1 + f + f2

)
satisfies

xy = 1 + ZΣG
(
1 + f + f2

)
Then

aa′ + bc′ + cb′ +
(
ab′ + ba′ + cc′

)
f +

(
ac′ + bb′ + ca′

)
f2 + ZΣG

(
1 + f + f2

)
= 1 + ZΣG

(
1 + f + f2

)
or equivalently

aa′ + bc′ + cb′ +
(
ab′ + ba′ + cc′

)
f +

(
ac′ + bb′ + ca′

)
f2 − 1

=
m

3
ΣG

(
1 + f + f2

)
for some m

3 ∈ Z. This implies

aa′ + bc′ + cb′ − 1 =
m

3
ΣG

ab′ + ba′ + cc′ =
m

3
ΣG

ac′ + bb′ + ca′ =
m

3
ΣG

Since ZGt and Z (ω)G each have only trivial units, we have that

(a+ b+ c)
(
a′ + b′ + c′

)
− 1 = mΣG

(a+ ωb+ ω2c)
(
a′ + ωb′ + ω2c′

)
− 1 = 0

(a+ ω2b+ ωc)
(
a′ + ω2b′ + ωc′

)
− 1 = 0
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so

a+ b+ c− u1 = m1ΣG

a+ ωb+ ω2c− u2 = 0

a+ ω2b+ ωc− u3 = 0

for some m1 ∈ Z, where ui = ±ωbigi ∈ G. Then

a− u1 + u2 + u3

3
=
(m1

3

)
By definition of ΣG, we have that for all h ∈ G,(

a− u1 + u2 + u3

3

)
[h] =

(m1

3

)
Now suppose that there does not exist a g ∈ G such that gi = g for all 1 ≤ i ≤ 3. Then(

a− u1 + u2 + u3

3

)
[gi] = a [gi]±

hi
3

where (3, hi) = 1, and since |G| > 3, we can pick g′ 6= gi for any i. Then(
a− u1 + u2 + u3

3

)[
g′
]

= a
[
g′
]

= a [gi]±
h

3

a contradiction. Thus, the gi are equal to g so therefore

a+ b+ c± ωb1g = m1ΣG

a+ ωb+ ω2c± ωb2g = 0

a+ ω2b+ ωc± ωb3g = 0

Note that b1 = 0 and m1
3 ∈ Z follow as consequences of the above and the fact that

a+ b+ c ∈ ZG, so

a+ b+ c± g = m1ΣG

a+ ωb+ ω2c± ωb2g = 0

a+ ω2b+ ωc± ωb3g = 0
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Adding all three rows and dividing by 3 gives

a+

(
±1± ωb2 ± ωb3

)
3

g =
m1

3
ΣG

Then (±1±ωb2±ωb3)
3 ∈ Z (ω). Without loss of generality assume the first sign is positive.

Under these restrictions there are three cases to deal with satisfying these constraints. �

Case 1. All signs are positive and b2 = 1, b3 = 2. Then
(
1 + ω + ω2

)
= 0 so a = m1

3 ΣG ≡

0 (mod ZΣG) . Then

b+ c+ g =
2m1

3
ΣG

ωb+ ω2c+ ωg = −m1

3
ΣG

ω2b+ ωc+ ω2g = −m1

3
ΣG

Subtracting the third equation from the second and dividing by ω − ω2 gives

b− c+ g = 0

so either b ≡ −g + m1
3 ΣG and c ≡ m1

3 ΣG, in which case

a+ bf + cf2 =
(m1

3
ΣG
)

+
(
−g +

m1

3
ΣG
)
f +

(m1

3
ΣG
)
f2

= −gf +m1ΣG

(
1 + f + f2

)
3

or b ≡ m1
3 ΣG and c ≡ g + m1

3 ΣG, in which case

a+ bf + cf2 =
(m1

3
ΣG
)

+
(m1

3
ΣG
)
f +

(
g +

m1

3
ΣG
)
f2

= gf2 +m1ΣG

(
1 + f + f2

)
3

In both these cases a+ bf + cf2 is a trivial unit modulo ΣG
(
1 + f + f2

)
.

Case 2. All signs are positive and b2 = 2, b3 = 1. The proof is entirely analogous to that

for the previous case.

Case 3. All signs are positive and b2 = 0, b3 = 0. Then (±1±ωb2±ωb3)
3 = 1 so a =

−g + m1
3 ΣG (mod ZΣG) . Then

b+ c = 2
m1ΣG

3
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b− c = 0

so we have

a+ bf + cf2 =
(
−g +

m1

3
ΣG
)

+
m1

3
ΣGf +

m1

3
ΣGf2

= −g +m1ΣG

(
1 + f + f2

)
3

which is a trivial unit modulo m1ΣG
(1+f+f2)

3 .

Since all cases have been covered, the proof is complete.

Proposition 58. Z [C4 × C4]t has only trivial units.

Proof. We have that if G = 〈f, g〉 and i is the imaginary unit, then

Q (i)G = Q (i)

[(
1 + f + f2 + f3

) (
1 + g + g2 + g3

)
16

]

⊕Q (i)

[(
1 + f + f2 + f3

) (
1 + ig − g2 − ig3

)
16

]

⊕Q (i)

[(
1 + f + f2 + f3

) (
1− g + g2 − g3

)
16

]

⊕Q (i)

[(
1 + f + f2 + f3

) (
1− ig + g2 + ig3

)
16

]

⊕Q (i)

[(
1 + if − f2 − if3

) (
1 + g + g2 + g3

)
16

]

⊕Q (i)

[(
1 + if − f2 − if3

) (
1 + ig − g2 − ig3

)
16

]

⊕Q (i)

[(
1 + if − f2 − if3

) (
1− g + g2 − g3

)
16

]

⊕Q (i)

[(
1 + if − f2 − if3

) (
1− ig + g2 + ig3

)
16

]

⊕Q (i)

[(
1− f + f2 − f3

) (
1 + g + g2 + g3

)
16

]

⊕Q (i)

[(
1− f + f2 − f3

) (
1 + ig − g2 − ig3

)
16

]
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⊕Q (i)

[(
1− f + f2 − f3

) (
1− g + g2 − g3

)
16

]

⊕Q (i)

[(
1− f + f2 − f3

) (
1− ig + g2 + ig3

)
16

]

⊕Q (i)

[(
1− if − f2 + if3

) (
1 + g + g2 + g3

)
16

]

⊕Q (i)

[(
1− if − f2 + if3

) (
1 + ig − g2 − ig3

)
16

]

⊕Q (i)

[(
1− if − f2 + if3

) (
1− g + g2 − g3

)
16

]

⊕Q (i)

[(
1− if − f2 + if3

) (
1− ig + g2 + ig3

)
16

]

Passing to QG we have

QG = Q

[(
1 + f + f2 + f3

) (
1 + g + g2 + g3

)
16

]
⊕Q

[(
1 + f + f2 + f3

) (
1− g + g2 − g3

)
16

]

⊕Q 〈g〉

[(
1 + f + f2 + f3

) (
1− g2

)
8

]
⊕Q 〈f〉

[(
1− f2

) (
1 + g + g2 + g3

)
8

]

⊕Q 〈f〉

[(
1− f2

) (
1− g + g2 − g3

)
8

]

⊕Q 〈g〉 [z1]⊕Q 〈g〉 [z1]

⊕Q

[(
1− f + f2 − f3

) (
1 + g + g2 + g3

)
16

]

⊕Q 〈f〉

[(
1− f + f2 − f3

) (
1− g + g2 − g3

)
16

]

⊕Q 〈g〉

[(
1− f + f2 − f3

) (
1− g2

)
8

]

where

z1 =

(
1 + if − f2 − if3

) (
1 + ig − g2 − ig3

)
16

+

(
1− if − f2 + if3

) (
1− ig − g2 + ig3

)
16

z2 =

(
1− if − f2 + if3

) (
1 + ig − g2 − ig3

)
16

+

(
1 + if − f2 − if3

) (
1− ig − g2 + ig3

)
16
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and truncation gives us

QG
QΣG

= Q

[(
1 + f + f2 + f3

) (
1− g + g2 − g3

)
16

−QΣG

]

⊕Q 〈g〉

[(
1 + f + f2 + f3

) (
1− g2

)
8

−QΣG

]

⊕Q 〈f〉

[(
1− f2

) (
1 + g + g2 + g3

)
8

−QΣG

]

⊕Q 〈f〉

[(
1− f2

) (
1− g + g2 − g3

)
8

−QΣG

]

⊕Q 〈g〉 [z1 −QΣG]⊕Q (g) [z2 −QΣG]

⊕Q

[(
1− f + f2 − f3

) (
1 + g + g2 + g3

)
16

−QΣG

]

⊕Q

[(
1− f + f2 − f3

) (
1− g + g2 − g3

)
16

−QΣG

]

⊕Q 〈g〉

[(
1− f + f2 − f3

) (
1− g2

)
8

−QΣG

]
∼= Q3 ×Q (i)6

The corresponding truncated maximal order is thus isomorphic to Z3×Z (i)6 which has

23 · 46 = 215 = 32768 units. A computer search of these units gives us that all units in the

maximal order also in the truncated group ring are trivial. �

Theorem 59. Suppose G′ = G × C4, where C4 = 〈f〉 and |G| > 4. Then if ZGt and

Z (i)G have only trivial units, then ZG′t has only trivial units.

Proof. Suppose ZGt has only trivial units; i.e,

xy − 1 = mΣG

for some m ∈ Z if and only if

x− u = m′ΣG

for some m′ ∈ Z, u = ±g ∈ G. Let

x = a+ bf + cf2 + df3 + ZΣG
(
1 + f + f2 + f3

)
∈ ZG′t
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be a unit. Suppose a′, b′, c′, d′ ∈ ZG exist such that

y = a′ + b′f + c′f2 + d′f3 + ZΣG
(
1 + f + f2 + f3

)
satisfies

xy = 1 + ZΣG
(
1 + f + f2 + f3

)
Then

aa′ + bd′ + cc′ + db′ +
(
ab′ + ba′ + cd′ + dc′

)
f

+
(
ac′ + bb′ + ca′ + dd′

)
f2 +

(
ad′ + bc′ + cb′ + da′

)
f3

+ ZΣG
(
1 + f + f2 + f3

)
= 1 + ZΣG

(
1 + f + f2 + f3

)
or equivalently

aa′ + bd′ + cc′ + db′ +
(
ab′ + ba′ + cd′ + dc′

)
f

+
(
ac′ + bb′ + ca′ + dd′

)
f2 +

(
ad′ + bc′ + cb′ + da′

)
f3 − 1

=
m

4
ΣG

(
1 + f + f2 + f3

)
for some m

4 ∈ Z. This implies

aa′ + bd′ + cc′ + db′ − 1 =
m

4
ΣG

ab′ + ba′ + cd′ + dc′ =
m

4
ΣG

ac′ + bb′ + ca′ + dd′ =
m

4
ΣG

ad′ + bc′ + cb′ + da′ =
m

4
ΣG

Since ZGt and Z (i)G each have only trivial units, we have that

(a+ b+ c+ d)
(
a′ + b′ + c′ + d′

)
− 1 = mΣG

(a+ ib− c− id)
(
a′ + ib′ − c′ − id′

)
− 1 = 0

(a− b+ c− d)
(
a′ − b′ + c′ − d′

)
− 1 = 0

(a− ib− c+ id)
(
a′ − ib′ − c′ + id′

)
− 1 = 0
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so

a+ b+ c+ d− u1 = m1ΣG

a+ ib− c− id− u2 = 0

a− b+ c− d− u3 = 0

a− ib− c+ id− u4 = 0

for some m1 ∈ Z, where ui = ibigi ∈ G. Then

a− u1 + u2 + u3 + u4

4
=
(m1

4

)
By definition of ΣG, we have that for all h ∈ G,(

a− u1 + u2 + u3 + u4

4

)
[h] =

(m1

4

)
Now suppose that there does not exist a g ∈ G such that gi = g for all 1 ≤ i ≤ 4. Then(

a− u1 + u2 + u3 + u4

4

)
[gi] = a [gi]±

hi
4

where (4, hi) = 1, and since |G| > 4, we can pick g′ 6= gi for any i. Then(
a− u1 + u2 + u3 + u4

4

)[
g′
]

= a
[
g′
]

= a [gi]±
h

4

a contradiction. Thus, the gi are equal to g so therefore

a+ b+ c+ d− ib1g = m1ΣG

a+ ib− c− id− ib2g = 0

a− b+ c− d− ib3g = 0

a− ib− c+ id− ib4g = 0

Note that b1 = 0 or b1 = 2 and that b3 = 0 or b3 = 2, and that m1
4 ∈ Z follow as

consequences of the above and the fact that a+ b+ c+ d ∈ ZG, so

a+ b+ c+ d± g = m1ΣG

a+ ib− c− id− ib2g = 0
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a− b+ c− d− ib3g = 0

a− ib− c+ id− ib4g = 0

Adding all four rows and dividing by 4 gives

a+

(
±1− ib2 − ib3 − ib4

)
4

g =
m1

4
ΣG

Then (±1−ib2−ib3−ib4)
4 ∈ Z. Without loss of generality assume the first sign is negative.

Under these restrictions there are 6 cases to deal with satisfying these constraints: �

Case 1. b2 = b3 = b4 = 0. Then we have a = g + m1
4 ΣG and so

b+ c+ d =
3m1

4
ΣG

ib− c− id = −m1

4
ΣG

−b+ c− d = −m1

4
ΣG

−ib− c+ id = −m1

4
ΣG

Subtracting the fourth equation from the second and dividing by 2i gives

b− d = 0

so b = d = m1
4 ΣG and c = m1

4 ΣG, so we have

a+ bf + cf2 + df3 =
(
g +

m1

4
ΣG
)

+
m1

4
ΣGf +

m1

4
ΣGf2 +

m1

4
ΣGf3

= g +
m1

4
ΣG

(
1 + f + f2 + f3

)
which is a trivial unit modulo m1

4 ΣG (1 + f)

Case 2. b2 = 1, b3 = 2, b4 = 3 Then we have a = m1
4 ΣG so

b+ c+ d− g =
3m1

4
ΣG

ib− c− id− ig = −m1

4
ΣG

−b+ c− d+ g = −m1

4
ΣG

−ib− c+ id+ ig = −m1

4
ΣG
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Subtracting the fourth equation from the second and dividing by 2i gives

b− d− g = 0

so c = m1
4 ΣG and the equations become

b+ d− g =
m1

2
ΣG

b− d− g = 0

−b− d+ g = −m1

2
ΣG

so b = m1
4 ΣG+ g and d = m1

4 ΣG. We thus have

a+ bf + cf2 + df3 =
m1

4
Σ +

(
g +

m1

4

)
ΣGf +

m1

4
ΣGf2 +

m1

4
ΣGf3

= gf +
m1

4
ΣG

(
1 + f + f2 + f3

)
Case 3. b2 = 3, b3 = 2, b4 = 1. Then we have a = m1

4 ΣG so

b+ c+ d− g =
3m1

4
ΣG

ib− c− id+ ig = −m1

4
ΣG

−b+ c− d+ g = −m1

4
ΣG

−ib− c+ id− ig = −m1

4
ΣG

We immediately have that c = m1
4 ΣG, so the equations become

b+ d− g =
m1

2
ΣG

b− d+ g = 0

−b− d+ g = −m1

2
ΣG

−b+ d− g = 0

so b = m1
4 ΣG and d = m1

4 ΣG+ g. We thus have

a+ bf + cf2 + df3 =
m1

4
ΣG+

m1

4
ΣGf +

m1

4
ΣGf2 +

(
g +

m1

4

)
ΣGf3

= gf3 +
m1

4
ΣG

(
1 + f + f2 + f3

)
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Case 4. b2 = 2, b3 = 2, b4 = 0. Then we have a = m1
4 ΣG so

b+ c+ d− g =
3m1

4
ΣG

ib− c− id+ g = −m1

4
ΣG

−b+ c− d+ g = −m1

4
ΣG

−ib− c+ id− g = −m1

4
ΣG

so c = m1
4 ΣG and the equations become

b+ d− g =
m1

2
ΣG

ib− id+ g = 0

or

b+ d− g =
m1

2
ΣG

b− d− ig = 0

contradicting that b and d are in ZG.

Case 5. b2 = 2, b3 = 0, b4 = 2. Then we have a = m1
4 ΣG so

b+ c+ d− g =
3m1

4
ΣG

ib− c− id+ g = −m1

4
ΣG

−b+ c− d− g = −m1

4
ΣG

−ib− c+ id+ g = −m1

4
ΣG

so c = g + m1
4 ΣG, b = d = m1

4 ΣG, and we have that

a+ bf + cf2 + df3 =
m1

4
Σ +

m1

4
ΣGf +

(
g +

m1

4
ΣGf2

)
+
m1

4
ΣGf3

= gf2 +
m1

4
ΣG

(
1 + f + f2 + f3

)
Case 6. b2 = 0, b3 = 2, b4 = 2. Then we have a = m1

4 ΣG so

b+ c+ d− g =
3m1

4
ΣG
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ib− c− id− g = −m1

4
ΣG

−b+ c− d+ g = −m1

4
ΣG

−ib− c+ id+ g = −m1

4
ΣG

so c = m1
4 ΣG and the equations become

b+ d− g =
m1

2
ΣG

ib− id− g = 0

or

b+ d− g =
m1

2
ΣG

b− d+ ig = 0

contradicting that b and d are in ZG.

Since all cases have been covered, the proof is complete.

43



Appendix: Sage Code

The following are listings of the SageMath code used to calculate the base cases in Chap-

ter 5 for n = 3 and n = 4. This consists of a file truncated_group_rings.sage, which

serves as a library for working with truncated group rings and the elements thereof, and the

actual commands used to perform the calculations in this paper. A Git repository contain-

ing this code can be found at https://github.com/mathlover2/truncated-group-rings.

Please note that this code is rather slow at the time of this writing.

## Begin file: truncated_group_rings.sage

from itertools import islice, product as iprod

from operator import add

## Code for the truncating ideal

def _reducer(x,R,G,sigma_element):

# Gives $\sum_{g \in G} \left| \left\[ x \right\]_{g} \right|}$.

def weight(v):

return sum(abs(x) for x in v.coefficients(False))

def length(v):

return v.length()

def val_ident(v):

return -abs(v.coefficient(G.identity()))
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def weed_out(f, l):

m = f(min(l, key=f))

return [v for v in l if f(v) == m]

n = length(x)

coeffs = sorted(x.coefficients())

n1 = len(coeffs)

# A simple case of x being already reduced.

if 2*n1 < n:

return x

else:

coeffs = set(coeffs) | {0}

candidate_reductions = [x - y*sigma_element for y in coeffs]

for weeder_function in [length, weight, val_ident]:

candidate_reductions = weed_out(weeder_function,

candidate_reductions)

if len(candidate_reductions) == 1:

return candidate_reductions[0]

return x - x.coefficient(G.identity())*sigma_element

def TruncatingIdeal(group_ring):

sigma_element = sum(group_ring.basis())

I = group_ring.ideal([sigma_element])

I.sigma_element = sigma_element

def reduce(self, x):

return _reducer(group_ring(x), self.base_ring(),
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self.ring().group(), self.sigma_element)

I.reduce = reduce.__get__(I)

return I

def _reducer_2(x, R, G, sigma_element):

# Alternative version of _reducer_. Works but isn’t as pretty.

ident = G.identity()

xx = x - x.coefficient(ident) * sigma_element

return xx

def TruncatingIdeal_quick(group_ring):

sigma_element = sum(group_ring.basis())

I = group_ring.ideal([sigma_element])

I.sigma_element = sigma_element

def reduce(self, x):

return _reducer_2(group_ring(x), self.base_ring(),

self.ring().group(), self.sigma_element)

I.reduce = reduce.__get__(I)

return I

## end file

The commands for the calculation.

## begin file

load(’truncated_group_rings.sage’)

from itertools import product as iprod

class TGRExample(object):

def __init__(self, G, R):

self.G = G

self.R = R

self.RG = self.G.algebra(self.R)

self.I = TruncatingIdeal(self.RG)

self.Iq = TruncatingIdeal_quick(self.RG)
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self.RGt = QuotientRing(self.RG, self.I)

self.RGtq = QuotientRing(self.RG, self.Iq)

self.fs = self.RG.gens()

self.fts = self.RGt.gens()

self.sigma = self.I.gen()

Qw = CyclotomicField(3)

Qi = CyclotomicField(4)

QC3 = TGRExample(AbelianGroup([3]), QQ)

QC3C2 = TGRExample(AbelianGroup([3,2]), QQ)

QC3C3 = TGRExample(AbelianGroup([3,3]), QQ)

QwC3C3 = TGRExample(AbelianGroup([3,3]), Qw)

QwC3C2 = TGRExample(AbelianGroup([3,2]), Qw)

QiC4C4 = TGRExample(AbelianGroup([4,4]), Qi)

w = Qw.gen()

f, g = QwC3C3.fts

basis = [(1+f+f^2) * (1/3), (1+g+g^2) * (1/3),

(1+f^2*g+f*g^2) * (1/3), (1+f*g+f^2*g^2) * (1/3)]

for units in iprod([1,g,g^2,-1,-g,-g^2], [1,f,f^2,-1,-f,-f^2],

[1,f,f^2,-1,-f,-f^2],[1,f,f^2,-1,-f,-f^2]):

z = (sum(map(lambda x,y: x*y, units, basis)))

if all(c in ZZ for c in QwC3C3.RGt.lift(z).coefficients()):

show(z)

f, g = QiC4C4.fts

ii = Qi.gen()

z1 = (1 + ii*f - f^2 - ii*f^3)*(1 + ii*g - g^2 - ii*g^3) \

+ (1 - ii*f - f^2 + ii*f^3)*(1 - ii*g - g^2 + ii*g^3)

z2 = (1 - ii*f - f^2 + ii*f^3)*(1 + ii*g - g^2 - ii*g^3) \

+ (1 + ii*f - f^2 - ii*f^3)*(1 - ii*g - g^2 + ii*g^3)

basis = [(1+f+f^2+f^3)*(1-g+g^2-g^3) * (1/16),

(1+f+f^2+f^3)*(1-g^2) * (1/8),
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(1+g+g^2+g^3)*(1-f^2) * (1/8),

(1-g+g^2-g^3)*(1-f^2) * (1/8),

z1 * (1/16),

z2 * (1/16),

(1-f+f^2-f^3)*(1+g+g^2+g^3) * (1/16),

(1-f+f^2-f^3)*(1-g+g^2-g^3) * (1/16),

(1-f+f^2-f^3)*(1-g^2) * (1/8)]

for units in iprod([1,-1], [1,g,-1,-g], [1,f,-1,-f], [1,f,-1,-f],

[1,g,-1,-g], [1,g,-1,-g], [1,-1],

[1,-1], [1,g,-1,-g]):

z = (sum(map(lambda x,y: x*y, units, basis)))

if all(c.is_integer()

for c in QiC4C4.RGt.lift(z).coefficients()):

show(z)

## End file
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